Semantics and the Organization

of Knowledge in Design

R. D. Coyne and J. S. Gero

Computer Applications Research Unit, Department of Architectural
Science, The University of Sydney, NSW 2006 Australia

Accepted for publication January 1, 1986.

The linguistic paradigm of design is considered. The idea
of meta-languages is developed as a means of generat-
ing designs that are imbued with semantic content. The
formulation of meta-languages therefore becomes a way
of organizing knowledge about design. The usefulness
of these ideas is demonstrated by means of programs
developed in Prolog.

INTRODUCTION

Computer-aided design systems often contain
models of the artifacts they assist in producing. We
may also expect computer-aided design systems to
contain other models, including models of designers,
or at least of the knowledge of designers. This raises
the question of how knowledge about design can be
conveniently and effectively organized within com-
puter systems. We pursue the linguistic paradigm as a
useful basis for structuring this knowledge.

Design can be discussed conveniently as operations
within a language. A system can be characterized as a
language if it consists of a set of indivisible elements
(an alphabet), a set of operations (such as union or
difference), a vocabulary, and a grammar.!? The gram-
mar defines a legal syntax. In natural language systems
the output is primarily an ordered list of vocabulary
elements called a sentence. In design the output is
generally an artifact, or the representation of an arti-
fact.

We discuss this paradigm by considering design as a
linguistic model taking place at various operational
levels. There are therefore such things as meta-lan-
guages in design. We explore this view by considering
the critical nature of semantics in the context of design
and by discussing how meta-languages can facilitate
mappings between meaning and artifact. Production
systems are discussed as appropriate ways of imple-
menting meta-languages. A simple system is described
that demonstrates these concepts.

SEMANTICS AND DESIGN

Considering artifacts as “‘sentences’” within a lan-
guage enables us to formalize certain concepts about

Design Computing, Vol: 1, Pp. 68-89 (1986)
© 1986 John Wiley: & Sons, Inc.

design that have had long-standing intuitive appeal.
(Edward’s Architectural Style® and Zevi’s The Modern
Language of Architecture* exemplify the rich body of
writings that explore the intuitive link between lan-
guage and architecture.) One such concept is that it is
possible to talk about an artifact having meaning. It
soon becomes evident that there is little to say about
an artifact, such as a building, if it is considered purely
in terms of the vocabulary elements of which it is com-
posed. It is also essential to talk about attributes not
immediately evident from an inventory of its compo-
nent parts. Implicit in the linguistic model is the notion
of semantics.

The Interpretation of Designs

An artifact possesses attributes other than those ex-
plicitly represented as syntax. These can be described
as derived, or implicit, attributes, and a set of such
attributes constitutes its semantic content. The seman-
tic content can be deduced from looking at the vocabu-
lary elements individually, in combination, and within
a context. Each vocabulary element carries with it var-
ious descriptions and, in natural language, dictionaries
are used to formalize the mappings between vocabu-
lary elements and their descriptions. The mapping of
compositions of vocabulary elements within a context
onto semantic descriptions is less direct, however.

How is semantic content derived from artifacts that
are represented syntactically? The issue is particularly
interesting when we consider the representation and
interpretation of objects in computer-aided design sys-
tems. Here we are dealing with the representation of
designs within a medium that is conceptually very dis-
tant from the built artifact. Conventional representa-
tions of buildings, such as line drawings, possess geo-
metrical properties not dissimilar to those of built
objects, and designers have little difficulty in providing
the necessary mapping from one to the other. In order
to derive basic meaning from a digital representation
within a computer, however, it is necessary to make
the mappings between syntactic representations and

CCC 0884-8165/86/010068-22$04.00

their semantic content explicit. This mapping is gener-
ally achieved by means of programs.

It becomes apparent when talking about syntax and
semantic content within a computer system that it is
possible to describe these mappings hierarchically.’
The hierarchical levels are generally separable at the
lower levels of description, although they may involve
complex connections at the higher levels. For exam-
ple, the syntactic representation of numbers within a
data structure may be interpreted as points and lines,
points and lines can be interpreted as primitive shapes,
primitive shapes as building elements, and collections
of elements as objects in the sense of belonging to
aggregation or part hierarchies.® Certain properties of
these objects and collections of objects can also be
derived. Elaborate programs have been devised for
calculating the complex properties of building designs
described in this way. The derived properties of de-
signs are also often called ‘“‘performances’ or “‘evalu-
ations.”’

It is also apparent that the distinction between the
syntax and the semantic content depends upon one’s
point of view. Data items, such as arrays of numbers,
may be interpreted as points and lines and be regarded
as syntactic representations, the semantic descriptions
of which are building components. The building com-
ponents may, in turn, be regarded as syntactic ele-
ments and their meanings described in terms of com-
positions and performances. At any level in this
hierarchy of representations we look ‘“‘downward’” to
primitive descriptions (syntax) and “‘upward’’ to less
explicit attributes (semantics). This makes it possible
to talk about doors and windows as vocabulary ele-
ments within a computer-aided drafting system even
though, at a lower level, the system operates on the
syntax of points and lines, and the meanings of these
element as doors and windows must be derived from
programs.

The semantic interpretation of designs represented
syntactically can be achieved by means of a type of
knowledge. When described as a cognitive activity the
process of interpretation is often considered as infer-
ence. This knowledge can therefore be regarded as
inferential knowledge. It can be embedded within algo-
rithms or represented in a form that makes the map-
pings between syntax and semantic content explicit. A
useful and intuitively appealing method of represent-
ing inferential knowledge is as rules of the form

IFCll,. .. ,anTHENb1,. P ,bn

This states that if a design possesses attributes a;, . .
. , a,, then infer that attributes »,, . . . , b, are also
possessed. We may suppose that the knowledge by
which a design is interpreted consists of many such
rules. This method of representing knowledge has di-
rect parallels with formal logic systems. It is assumed
that for a static design within an unchanging context,

anything that is inferred to be true remains true.
Hence, as we make more and more inferences, we are
building up a more complex and complete understand-
ing of the design. (It has been argued that this assump-
tion of monotonicity is not necessarily a good model of
cognitive processes, although it appears to be a useful
one.”)

For a given set of inference rules, the number of
attributes that can be derived is likely to be very large.
Therefore, there will be more work involved in asking
of a design, *“What attributes can be inferred from its
syntactic description?”’ than asking ‘‘Does the design
have this particular set of characteristics?”” The
former suggests a data-driven approach where we be-
gin with a syntactic description and try to infer as
much as the rules will allow. The latter is a goal-di-
rected approach where we commence with various at-
tributes and try to discover if the artifact possesses
those attributes. The value of different approaches to
inferring meaning have been discussed in the context
of expert systems, which are a class of automatic infer-
ence system.®?

The tasks of representing design descriptions'® and
that of deriving meaning from syntactic descriptions of
artifacts raise complex issues. (An example of a
knowledge-based approach using rules of inference is
that described by Akiner.!") The generation of syntactic
representations, that is, artifacts, from semantic de-
scriptions poses even greater practical and theoretical
difficulties. A generative system takes a set of seman-
tic descriptions as a set of goals and addresses the
problem: ““What configuration of syntactic elements
will constitute an artifact exhibiting these characteris-
tics?”’ Whereas a goal-driven inference system seeks
to discover whether or not a certain set of attributes is
true of a design, a generative system seeks to produce
a design that exhibits a set of goal characteristics. It is
unlikely that the rules by which performances can be
derived will, on their own, be of much assistance in
enabling designs to be generated.'? In order to gener-
ate designs it is necessary to make use of a grammar of
design.

Design Grammars

The principles by which vocabulary elements can be
put together at the syntactic level to form artifacts
constitute a grammar. Inherent in a grammar is a set of
mappings between vocabulary elements such that cer-
tain groupings of elements can be transformed into
other groupings. The formulation of phrase structure
grammars by Chomsky? is based on transformation
rules that make explicit the mappings between vocabu-
lary elements. Like the rules of inference described
above, each grammar rule has an antecedent part and a
consequent part (or a “‘left-hand side’” and a ‘‘right-
hand side’’). If the vocabulary elements in the ante-

COYNE AND GERO: SEMANTICS AND ORGANIZATION OF KNOWLEDGE 69



cedent part of the rule are present, then they are re-
placed by the vocabulary elements in the consequent
part of the rule. Rules of grammar in natural language
can be used to parse sentences, that is, decompose
them into specialized vocabulary elements (called
““syntactic categories’’ or ‘‘nonterminal elements’’),
to see whether the sentences conform to the rules of
the grammar. A syntactic grammar can also be used to
generate legal sentences in the language.

In natural language, strings can be generated by ap-
plying rules successively to the nonterminal vocabu-
lary element, sentence, to produce a list of words that
constitutes a sentence in the language. The linguistic
paradigm is an attempt to describe design processes in
this way. Whereas rules of inference build up a more
complete description of the design, under a grammar a
design undergoes developmental or evolutionary
changes. From some initial representation of a design
(the ““initial state’’), therefore, the grammar rules are
applied to bring about changes, and intermediate
stages in the process may exhibit characteristics quite
different from the end state. It is possible to generate
designs that conform to a syntactic design grammar.

Design Generation

That grammars of composition can be derived for
generating architectural designs has been demon-
strated both informally by design theorists such as Al-
exander'* and formally by Stiny and Gips,'* Mitchell, !¢
and others. But are purely syntactic grammars suffi-
cient on their own to model meaningful design activ-
ity? How can compositions of syntactic elements be
generated given some semantic content? In natural
language, it appears, competent speakers know which
grammar rules to select, depending on context, to sat-
isfy certain semantic requirements. Theories of mean-
ing, however, are less well developed than theories of
syntax, and this constitutes a major hurdle in our un-
derstanding of how utterances in natural language are
produced.!” An understanding of how we achieve map-
pings between intended meaning and suitable strings
of words is crucial if we are interested in the auto-
mated generation of meaningful sentences. Presum-
ably this mapping is achieved by a kind of knowledge.
In design, too, it seems as though we bring knowledge
to bear on the creation of artifacts other than the syn-
tactic grammar.

A simple paradigm of design (which is perhaps less
immediately applicable to natural language) is that of
‘“‘generate and test”. It is possible to formulate the
required semantic content as a set of goals. A grammar
is used to generate designs, and inferential knowledge
is. used to determine which of the designs possesses
the attributes meeting the requirements of the goal set.
The knowledge that makes possible the mapping be-
tween goals and designs is therefore embedded in the

70 DESIGN COMPUTING, VOL. 1, NO. 1, 1986

control of such a system. In general, the computa-
tional effort required for the generation of all possible
states in order to carry out this evaluation is prohibi-
tive.

One way to ensure that goals are satisfied without
exhaustively generating all the possibilities of the
grammar is to develop a system that first finds out
which rule, or rules, immediately produces the goal
condition. When these rules have been identified the
task is to find out which rules need to be applied in
order to satisfy their preconditions. The process is
therefore to chain backwards through the rules from
the goals until the initial state is reached. Once a rule
sequence has been determined it can be used to gener-
ate the artifact that is ‘‘guaranteed’ to contain the
required attributes. Unfortunately, this is not a simple
process since design goals are generally nonserializa-
ble; that is, they cannot be satisfied independently of
one another, and mechanisms have to be devised for
efficiently handling goal interaction.

This view of design (as language) therefore exhibits
the problems inherent in general production systems,
that of the satisfaction of nonserializable goals. Vari-
ous techniques have been proposed that attempt to
address this problem in production systems® and
these are applicable to language systems. The applica-
bility of some of these techniques to design has been
discussed by Coyne and Gero."” However, not all of
the techniques assist in preserving the intuitive appeal
of the linguistic paradigm, nor do they provide organi-
zational structures that make it possible to explicitly
represent knowledge of the type readily available to
design experts.

The view explored here is that, for certain design
domains, the knowledge by which grammar rules are
selected can be made explicit. This is because the
grammar rules tend to form a semantic structure on
their own. The rules of grammar in design languages
are not always anonymous but have names. These
names label the rules as actions, and these actions
form a semantic structure. It is also possible to identify
a grammar of actions, or a meta-grammar, and there is
often a link between the semantics of actions and the
semantics exhibited by the final artifact.

Semantics of Actions

In architectural design the product is generally an
artifact occupying three-dimensional space. But de-
sign in general can be manifest in other dimensions and
media, such as music and art. In certain artistic en-
deavours the process by which the artifact is accom-
plished is also considered an important part of the arti-
fact; for example, in such “‘art events’’ as wrapping up
a mile of Australian coastline in fabric by Christo Java-
cheff or action painting by Jackson Pollock. Pursuing
the idea of art and design as language, actions should

therefore form a language of their own with their own
syntax and semantics.

In the process of constructing a building (as opposed
to the process of design) it is possible to identify cer-
tain syntactic elements (a vocabulary of actions).
These might be activities such as pouring concrete,
laying bricks, etc. If one asks what is being done on a
particular part of a building site, the answer ‘‘Bricks
are being laid”’ is an appeal to the syntactic content of
the process, whereas the answer ‘A wall is being
built” is an appeal to the semantic content of the pro-
cess. If the answer is “‘A building is being built” or
“They are constructing a single family house’” then
higher levels of meaning are being explored.

In the process of design similar activities may be
identified, such as creating and moving spaces, parti-
tioning spaces, labelling shapes, etc. These are actions
that transform design states and constitute the gram-
mar of a design language. Unlike the grammar rules of
natural language, as outlined by Chomsky, this design
grammar appears to be rich with meaning. It is possi-
ble to talk about mappings between actions in the same
way that we consider mappings between physical at-
tributes. For example, the action move the kitchen
closer to the dining room could be part of the syntactic
expression of the semantic goal keep travel distances
short. Whereas it is very difficult to map the natural
language grammar rule, replace a noun phrase with an
article and a noun, onto higher level actions, designers
are able to readily articulate such mappings within
their languages.

These design actions therefore constitute the vocab-
ulary and semantics of a meta-language. Does this
meta-language have a grammar? In order to satisfy the
requirements of a language there should be rules for
selecting and ordering design actions. An example of
such a rule appropriate to any vocabulary of actions is:

If action a and action b are to be performed, and
action a requires a consequent of action b before
it can be implemented,

then order the actions such that b is before a.

Rules about ordering appropriate actions therefore
constitute a type of grammar.,

How does the recognition of a meta-language assist
in the generation of designs that have been given some
semantic description? In some cases there appears to
be an obvious mapping between semantic descriptions
of “artifacts and the semantic representations of
actions. By undertaking a particular type of process it
is known that designs with particular attributes will be
produced. The links between process and form have
often been made in the context of architectural design.
At a simple level, such a mapping is exemplified by the
rule: in order to produce a compact building layout,
start with a square perimeter and attempt to arrange

the functions within that; or the rule: the actions of
laying out grids and axes tends to produce formal and
symmetrical building plans. By making such mappings
explicit it may be possible to employ this knowledge in
the generation of designs. Further mappings will be
considered below.

Design is therefore described as a language operating
on multiple levels. Just as there is a grammar (or set of
actions) that governs how physical vocabulary ele-
ments fit together, there is a meta-grammar that deter-
mines how those actions are to be combined. There
may also be levels of grammar above that.

How does this formal view accord with our under-
standing of the process of design as attempting to deal
with ill-defined problems? In design a complete and
definitive formulation (that is, a grammar, vocabulary,
set of goals, etc.) is not obvious in any sense from the
design problem, but must be extracted from an infor-
mation-rich and often poorly understood context.
Once the formulation is achieved, it is not rigorous and
can be expected to change as the design progresses.2
The view of design, as a multilayered language system,
accommodates the view put forward by Simon?! that
design problems may appear to be ill-structured at the
large scale of the design process but can be formulated
such that they are well-structured at the detailed level.
The major task of design therefore appears to be that
of structuring the problem. This is a problem-solving
task in itself that involves partitioning the domain into
well-structured subproblems that are constantly un-
dergoing reformulation. The problem formulation can
therefore be seen as a discourse in a meta-language
that takes as its syntax the semantics and grammar of
the lower level language.

Design languages are therefore highly dynamic. The
rules of grammar appear to undergo change, not only
as the designer’s style develops in the long term, but
also as the particular design is being developed. It ap-
pears that the reason it is necessary for designers to
articulate their processes as sketches is that, in doing
s0, attributes of the design come to light that could not
have been readily anticipated. Not only does a partial
design on paper exhibit attributes that were intended,
but it also exhibits unintended or ‘‘extensional’’ se-
mantic attributes. Goals are also undergoing evalua-
tion and change. Whereas such processes appear to be
less obvious in natural language, design languages are
characterized by this visible and obvious exploratory
component.

The view adopted here is that the dynamic charac-
teristics of design processes can be accommodated by
meta-languages and that the grammars of such lan-
guages can be made explicit. However, only the static
view will be explored in detail here. The design pro-
cess will be constrained to that of selecting and order-
ing rules from a statically defined grammar within a
static context. In order to demonstrate how such

COYNE AND GERO: SEMANTICS AND ORGANIZATION OF KNOWLEDGE 71



grammars can be made explicit it is necessary to see
how design knowledge can be represented and manip-
ulated.

KNOWLEDGE STRUCTURES

Language systems can be formalized as production
systems. The production system formalism is a way of
organizing a computational system into particular
functional components. David and King? and Gips
and Stiny?® provide summaries of the underlying struc-
ture common- to most production system formalisms.
These can be described in various ways, but generally
consist of three basic components:

1. the domain on which the system is to work;

2..production rules for transforming the domain

from one state into another;

3. a control strategy.

The domain of operation is that which undergoes tran-
sition as a series of states. This domain can also be
described as a ‘‘global database.”” The global database
is generally represented using some uniform structure,
such as an ordered list, an array, a network, or a set.
The elements that make up the global database are
literals of some kind. In a language system these are
the vocabulary elements. The task of a production sys-
tem is generally to transform the global database from
some initial state to an end state, and there may be any
number of intermediate steps along the way.

The application of the production rules transforms
one state into another. In a language system these
rules constitute the grammar. The set of all possible
states generated by a set of production rules is termed
a space of states. This can be represented as a con-
nected graph where nodes are states and directed arcs
are the rules that produce them.

Control is concerned with three issues: the first two
have to do with implementing rules, the third concerns
selecting rules. The implementation of rules concerns
matching and execution. A matching mechanism may
search for a one-to-one mapping between literals in the
conditions part of a production rule and the global da-
tabase. However, more complicated mechanisms may
be involved, for example, where the conditions in the
production rule must be inferred from the global data-
base. In this case the attributes to which the produc-
tion rule is to respond are not represented explicitly in
the form of literals in the global database. This sug-
gests'the need for a body of inferential knowledge by
which these mappings can be made.

Control is also concerned with the mechanism by
which production rules are executed. In a production
system it is expected that productions are represented
in a uniform way and that there is a mechanism appro-
priate to the execution of all rules. If there is a match
between the conditions part of the production rule and

72 DESIGN COMPUTING, VOL. 1,,NO. 1, 1986

the current state, then those matching elements are
deleted from the global database, and those in the con-
sequent part of the rule are substituted. The conse-
quent part of the rule may also consist of a set of
actions, performing complex operations on the global
database. This requires a set of procedures for carry-
ing out actions, in the same way that the conditions
may require a special body of knowledge for matching.
There may, of course, be more than one type of pro-
duction. That is, there may be classes of productions
in the system with each class requiring different
matching and execution mechanisms.

The third control issue concerns the selection of
rules. Given any state of the global database there will
be several rules applicable for transforming that state.
Typically, there will be many choices, and hence many
paths through the space of states, and it will be neces-
sary to adopt some strategy for choosing which rules
to execute in order to achieve an end state. There are
different ways in which the control can operate in or-
der to do this. It can be designed to produce an arbi-
trary end state, exhaustively produce all possible end
states, or produce an end state (or states) with particu-
lar attributes (that is, it can be goal directed). An ex-
ample of the first type of control mechanism is one that
always selects the first rule applicable from an ordered
list of rules. This is equivalent to tracing down the left-
hand path of a state-space graph in a ‘‘depth-first”
manner until an end state is reached, at which point
the process terminates. A controller for generating all
end states may adopt an exhaustive search and back-
track mechanism. This is where paths are explored
until an end state is achieved. The controller then
backtracks to the last state where there was a choice of
rules, selects another rule, and then proceeds to find
another end state. This continues until all possible
states have been encountered. Goal-directed control
generally involves the evaluation of states in some
way. It, too, may involve exhaustive search and back-
tracking, but states are evaluated against some set of
criteria, and this directs the search.

This is the basic representation of a production sys-
tem, and it is the basis for the formulation of many
automated problem-solving methods.'®?* The difficult
part of this formulation is in devising methods for effi-
ciently selecting and ordering production rules. In a
language system this issue of control concerns the
mechanism that achieves a mapping between the
intended semantic content of the artifact and the
final syntactic expression. A meta-grammar is essen-
tially a method of controlling a production system. Con-
trol is achieved by formulating a production system
that has as its global database an ordered set of pro-
duction rules and operates on these by means of
meta-rules. The output of such a control system pro-
vides an a priori rule list for the system it is control-
ling.

ab

aef
3 4 2 1
A 4
ghdb cijb cdef

’ p 5
4 2 4
4

ghijb ghdef cijef
\14/
ghijef

Figure 1. Search space for a commutative system.

Characteristics of Grammars

A production system begins with a global database
in some initial state. This is then operated upon by the
production rules. Terminal states are those in which
no rules are applicable.

Search spaces display different characteristics de-
pending on the characteristics of the production rules
and the initial conditions. Certain rule sets operate
commutatively, that is, at any state where there are
several rules applicable any one of these can be se-
lected and executed. The system will always reach the
same terminal state even though rules are selected ar-
bitrarily. This does not mean that all states will neces-
sarily be encountered by arbitrary rule selection. Nor
does it imply that the terminal state will be reached
with equal efficiency along paths. Neither is it neces-
sary that each path encounters all production rules. If
a rule set can be identified as being commutative, then
that affords certain advantages. There is only one ter-
minal state, and if the goal of the system is to reach
this state, then it means an irrevocable control regime
can be employed. Backtracking is unnecessary. An
example of a set of rules that operates on character
strings in a commutative fashion is given as follows:

a—c,d (1)
b—e, f 2
c—>gh 3)
d—1i,] 4)

A rule can be executed if the symbols on its left-hand
side can be matched against the global database. When

the rule is executed it results in the symbol on the left
being deleted from the database and the symbols on
the right substituted. Each rule is numbered. If the
initial state consists of the symbols

a, b

then the system is commutative. The states and the
rules that produce them are depicted in Figure 1. The
terminal state consists of the symbol string:

g hijelf

Certain rule sets have the advantage of being de-
composable. This is where states can be divided into
substates that are operated on independently. The ter-
minal states so produced need then only be combined.
Certain rule sets display both characteristics, and
some interesting symmetries between commutative
and decomposable systems are discussed by Nilsson.!®
The rule system described above is also decompos-
able; this is illustrated in Figure 2. The vertical bars
indicate how states can be decomposed and operated
on independently. The terminal state consists of the
concatenation of the three states at the branch ends
indicated (*). (This system has the advantage that not
only is rule order unimportant in the achievement of
the terminal state, but the rules can also be processed
using a control regime that makes use of parallel pro-
cessing.)

Examples of rule sets exhibiting these characteris-
tics are evident in design. At certain states in the de-
sign process the rules that operate on partial design
states can be applied independently of one another. In
the design of a single story house, for example, it can
generally be assumed that rules operating on the living
room that locate a fireplace have little or no effect on
the rules operating on bedrooms that locate ward-
robes. The rule set is, to some extent, decomposable
at this stage. The order in which certain rules are im-
plemented may not matter either. So, such a system is
also commutative. Attempts to formalize architectural
design principles often result in the explication of rule
sets of this type, as exemplified in Alexander’s A Pat-
tern Language."* Because rule sets of this type are

a b
SN
¢ |d e f
%
3 4
g h Lj

£

%k

Figure 2. A decomposable system.

COYNE AND GERO: SEMANTICS AND ORGANIZATION OF KNOWLEDGE 73



a
1 2
b c
/\
d e

Figure 3. Search space for a poorly behaved rule set.

relatively easy to control, they can be described as
“well behaved’’ rule sets.

A simple rule set that is ‘‘poorly behaved”’, that is,
neither decomposable nor commutative, is illustrated

below:

a—b (1)
a—c (2)
b—d (3)
b—e 4)

where the initial state is the single symbol:
a

The search space for this system is shown in Figure 3.
The application of any rule commits the system to a
path that does not converge with any other path, and
there is more than one terminal state. The rules exhibit
a high degree of interdependence.

In design we are often concerned with rule sets
that have a high degree of interdependence. Rules that
govern the placement of spaces in buildings are typi-
cally like this. Rules about objects competing for
placement tend to produce different results depending
on order because a commitment to the location of one
object obviates that location as a possible site for an-
other object. The problem of laying out a building
could therefore be partitioned into several subprob-
lems: those concerned with interacting rule sets that
locate important spaces, and those concerned with de-
composable and commutative rule sets about details
such as fireplaces and wardrobes. This is, of course, a
simplification, but it is the sort of assumption that de-
signers are prepared to make during the development
of a design. The most difficult types of problems in
design tend to require a grammar that is highly interac-
tive. The shape grammar rules of Stiny and Mitchell®
are mostly of this type.

Knowledge About Control

It happens that any production system can be re-
formulated as a commutative system. There is nor-

74 DESIGN COMPUTING, VOL. 1, NO. 1, 1986

mally no advantage in such a reformulation except in
providing a structure that will accommodate explicit
control knowledge if it is available. One way of accom-
plishing this for the search space of Figure 3 is to
devise the following control regime:
1. Match the left side of the first rule with the global
database.
2. Retain the element that has been matched.
3. Add the right side of the rule to the global data-
base.
4. Join the element added to the element just
matched with an arrow symbol.
5. Label the arrow with the name of the rule.
6. Cycle through this procedure for all the rules un-
til none are applicable.
This procedure produces the search space illustrated
in Figure 4. This formulation introduces a complexity
of representation in the global database, but the pro-
cess of selecting between rules is simplified since any
ordering of rules produces the one terminal state that
is simply the search graph of Figure 3. By introducing
the following rule it is possible to make explicit the
knowledge by which a goal state is matched:

goal(X), X — found (5

Figore 4. Partial search space of Figure 3 as a commutative
system.

goalle) a

‘N‘
a a
goal(e) \‘2
c

goal(e) , ‘/I
z\u 4/1
goal(e) ‘1/“\:

b ¢
/\
goal(e) ;/a\{ goal(e) I

b ¢ b /\c

& 4

d \e

goalle) a p a

1 N goal(e) i 2
b c 5 b /\C

3 4
d /\g Sfound 4 \
\ /

goalfe) ; a

s l \ K,

found 3K\i
d

e

e

c

Figure 5. Partial search space of Figure 4 incorporating rule S.

The rule states that if there is a literal of the form
goal(X) in the global database, where X is a variable,
and X also exists as a symbol in the database, then add
the word found to the database. This word is a flag that
signals that the goal has been satisfied. The initial state
of this system therefore contains a statement about
how to find a goal state. The search space for this
system, using the same control regime outlined above,
is illustrated in Figure 5. There are therefore two goal
states: these are states containing the word found.
What is achieved is simply a way of structuring the
problem such that knowledge about control can be
made explicit. It follows that if knowledge about effi-
cient search is available, then this can be made explicit
as rules in the same way.

Basically, this is the technique employed in the
NOAH planning system.?® Instead of representing
states as partially formed search trees, however, the
approach is to represent the global database as a net-
work of actions called a procedural network. The
nodes of the network are therefore the actions or pro-
duction rules that transform the global database.
Nodes are connected in such a way that the system
begins with little commitment to order, and the final
state is one in which the ordering of the actions is
resolved. The operations that transform the proce-

dural network are the actions themselves and a type of
rule called the “‘critic.”

This approach has been discussed in the context of
learning systems?’ and, more recently, in the context
of natural language generation.® An explanation of
procedural networks in the context of design has also
been discussed by Gero and Coyne.? This will be de-
veloped further below.

Scheduling

If a system is poorly behaved, then the ordering of
rules is determined by their interactions. If a system is
well behaved, then the control issue shifts to that of
finding a path that is, in some sense, optimal. The
scheduling system for the HEARSAY speech under-
standing system appears to work on this assumption.*®
Production system control is provided by types of
meta-rules called scheduling rules that select between
competing rules. (The arrangement of applicable rules
is therefore the schedule.) The information available to
the system is that found by triggering each of the com-
peting rules to see what changes these make to the
global database. Scheduling rules check which rule
seems to create the most desirable changes, and that
rule is then executed. This process is repeated for each
state. This has been demonstrated to be a useful basis
for simulating cognitive activities, such as errand plan-
ning.3H32

The use of a scheduler can be demonstrated simply
by considering a production system that contains the
following three rules:

a-—>a, b (N
a—a,b,c )
b—a 3

The first few branches of the (infinite) search graph are
shown in Figure 6. Scheduling rules are meta-rules
that decide between possible rules at each state. Two
such meta-rules might be

s.1 Select the rule that produces the smallest state.
5.2 Select the rule that produces the largest state.

abbce

abb l abcbe

abcb‘ I aa—l

aac ‘

Figure 6. Search graph showing alternative paths generated by
scheduling rules 5.7 (bold) and 5.2 (dotted).

COYNE AND GERO: SEMANTICS AND ORGANIZATION OF KNOWLEDGE 75



If 5.1 is operating, then the search procedure will fol-
low the path indicated with bold arcs in Figure 6. If 5.2
is operating, then the dotted path will be followed.
These scheduling rules are entirely arbitrary in this
context, but similar strategies are often followed in
general problem solving when there appear to be no
better guides. However, 5./ bears some intuitive simi-
larity to the strategy of consolidation, whereas 5.2 is
similar to diversifying. Scheduling generally takes ad-
vantage of such heuristics.

One way of tackling the problem of determining rule
order in a poorly behaved system is therefore to for-
mulate it as a commutative system that is controlled by
a scheduler. This is the same as controlling a language
of simple rules but complex interactions by means of a
meta-language that contains complex rules driven by a
simple controller. This will be developed further.

STRUCTURING DESIGN KNOWLEDGE

Knowledge-based systems are computer programs
that are intended to make the knowledge about a par-
ticular domain explicit and operable. In general, this
can be achieved if the knowledge is represented and
organized to meet certain objectives. These can be
summarized as:

1. uniform methods of knowledge representation;

2. uniform control mechanisms;

3. the knowledge is explicit and has some meaning
in terms of the domain;

4. the processes resulting from the application of
the knowledge are visible and comprehensible in
terms of the domain.

It appears that it is possible to meet these objectives,
at least in part, with formulations based on production
systems, although other methods are actively used in
knowledge-based systems.?*34 It is desirable that the
knowledge contained in the production rules bears
some resemblance to the way that human experts un-
derstand their knowledge. So the way in which the
rules are formulated is also important. The fourth goal
suggests that it should be possible to ‘‘see’” what is
being done with the knowledge, perhaps graphically,
and that the intermediate steps during the develop-
ment of the artifact resemble, in some way, the pro-
cesses carried out by designers. The formulation of a
knowledge-based system that is appropriate to design
and that makes use of production systems is consid-
ered here as a means of addressing these objectives.

In the linguistic formulation proposed, knowledge is
made explicit primarily in the form of grammars and
rules of inference. Control knowledge is made explicit
in the form of meta-grammars. This can be demon-
strated by structuring a domain, that concerned with
layout planning in buildings, as three layers of lan-
guage. The layering takes advantage of the properties
of commutative ~production systems as discussed

76 DESIGN:COMPUTING, VOL. 1, NO. 1, 1986

above. So, as well as providing a structure for making
knowledge explicit, there are some implementational
advantages as well. The particular layering proposed
(and the naming of levels) is pragmatic and is not in-
tended to capture a universally applicable view of de-
sign, but is intended merely to illustrate that such lay-
ering is possible and advantageous. (As has already
been suggested, an even richer formulation would be
the provision of meta-languages that permit the gram-
mars of the languages they control to undergo dynamic
change.)

Language of Form

There is a language that operates at the object level
and is concerned with transformations involving spa-
tial forms. The grammars demonstrated by Stiny and
Mitchell are of this type. They operate on shapes that
consist of points and maximal lines. These grammars
do not require any representation of the semantic con-
tent implicit in those shapes in order for transforma-
tions to be effective. (A separate grammar is proposed
for building up descriptions of designs by Stiny* in a
way different from that discussed here.) A simple
grammar for generating designs has been demon-
strated and implemented as a computer program by
Coyne and Gero.! A different approach has been em-
ployed; the vocabulary is a set of primitive building
elements such as walls and columns, and the grammar
rules consist of explicit representations of those ele-
ments that are to be matched and those that are to be
substituted. This has the limitation that building ele-
ments are treated as if they were items of furniture:
entirely discrete and of fixed size.

There may be any number of ways of formulating
object level grammars, but a useful type of rule is that
which takes dimensionless spaces as vocabulary ele-
ments and operates on these. This is an attempt to
capture something of the ‘‘fluidity”” of spatial repre-
sentation during the design process.

The grammar proposed is similar to the set of rules
described by Mitchell et al. for generating ‘‘rectangu-
lar dissections.”’ Other rules for the same purpose are
proposed by Earl®” and Flemming,* as discussed by
Steadman.® The study of rectangular dissections is
ostensibly concerned with enumerating the different
ways in which a rectangle can be divided into subrect-
angles, but it can also be applied to the generation of
building layouts. Dimensioning is of only secondary
importance in this context. Dimensioning can be consid-
ered separately, and there are numerical techniques
for handling this problem.”* Examples of rules by
which dissections can be generated are considered
here as a means of generating layouts. These are
shown schematically in Figure 7. Rule @ adds a rectan-
gle by appending it to the right side of an existing
composition. Rule b appends a rectangle to the top of

a —p
b —
c —
d -

Figure 7. Examples of rules for generating rectangular dissections.

the configuration. Rules ¢ and d operate by extending
certain of the rectangles at the edge of the configura-
tion and adding a new rectangle in the space thus
formed. Other rules can be devised. The idea is to
begin with a single rectangle (a space) that then under-
goes successive transformations resulting in a complex
composition of rectangles. It should be noted that after
the operation of each rule the composition retains its
overall rectangular shape (as well as being composed
of rectangles). States in the development of a simple
rectangular configuration are illustrated in Figure 8.
The success of the grammar for generating building
layouts relies on the following set of assumptions:

1. There is a small set of rules with which it is possi-
ble to generate every possible arrangement of
rectangular dissections.

2. Any geometrically orthogonal arrangement of
rectangular spaces can be derived by first creat-

b c d
—p —p —p

Figure 8. States in the development of a rectangular configuration
achieved by executing the rule sequence b, ¢, d from Figure 7.

ing a rectangular dissection (allowing for the de-
letion of spaces).

3. The generation of rectangular dissections is best
accomplished if every intermediate state in the
generation process is also a rectangular dissec-
tion.

The validity of these assumptions is not of concern
here. It is also assumed that any deficiencies in the
rules proposed can be overcome by the provision of
more rules, or the refinement of the rules. The general
idea is therefore not dependent on the sophistication of
the proposed grammar.

This language is fairly rich and can be employed to
generate simple building layouts. It appears to exhibit
the characteristics of the poorly behaved rule set de-
scribed above, since the order in which rules are exe-
cuted clearly determines the outcome, and there can
be many end states. (That there is an infinite number of
possible layouts can be proven by considering the re-
peated application of rule a.) There are other rules
relating to this domain that can be added and that dis-
play well behaved properties. These are illustrated in
Figure 9 and are concerned with the locations of win-
dows, the locations of openings between rooms, and
the deletion of spaces. These can be considered as
“‘enhancements’ since they do not really affect the
location of spaces as determined by the other rule set,
nor do they impinge appreciably on one another. It can
be assumed that the implementation of one of these
rules is not affected by the implementation of other
rules of the same type. The rules of Figures 7 and 9
could operate as a useful set of ‘‘commands’ for a

Figure 9. Examples of rules for positioning windows (e), position-
ing doors (f), and deleting spaces (g).

COYNE AND GERO: SEMANTICS AND ORGANIZATION OF KNOWLEDGE 77



h

B | —* B

c c

put A east_of B and north_of C

Figure 10. Descriptive names associated with rules a and ¢ in Fig-
ure 6. A, B, and C are variables naming spaces.

design system. The rules only contain knowledge
about what preconditions are necessary before the
consequent can be carried out. They contain no
knowledge about whether or not it is desirable that a
rule be executed in order to meet certain semantic
requirements. This is the role of the language of
actions that controls the language of form. In this dis-
cussion the rules of Figure 7 only are considered in
detail.

Language of Actions

The rules of Figure 7 can be given names that de-
scribe what they achieve. They can be represented in
the general form

put A Dir B,
put A Diry B and Dir, C

where A, B, and C represent the names of spaces, Dir,
Diry, and Dir, are directions (north_of, south_of,
east_of, and west_of), pur is a descriptive predicate
indicating that the spaces should be put in place, and
and carries its normal meaning as conjunction. As well
as containing a set of conditions that must be matched
against a global database and a consequent that de-
scribes the changes to be made to the database, the
rules therefore also carry a descriptive name. Rules a
and ¢ in Figure 7 can therefore bear the names

put A east_of B
put A east_of B and north_of C

where A, B, and C are variables representing spaces
(Fig. 10). The actions

put bathroom east._of bedroom
put -dining_room east_of kitchen and north.of
living_room

are therefore specific instances of these rules.

78 DESIGN:COMPUTING, VOL. 1, NO. 1, 1986

Rules that transform states can also be regarded as
actions. The grammar of Figure 7 can therefore be
described as a set of actions. These actions constitute
the vocabulary of a language of actions. In this lan-
guage the way in which the actions operate (as rules)
can be ignored. So we only consider their names. The
relationship between these actions, however, is impor-
tant. The ‘‘artifact’” (final state) of the language con-
sists of a sequence of actions that provides the control
for a language of form. There are two useful relation-
ships between actions that we wish to consider: serial
and parallel relationships. In serial relationships
actions are configured in the order in which they are to
be executed. In parallel relationships actions are ar-
ranged in groups as conjunctions and disjunctions. It is
therefore possible to represent actions with varying
degrees of commitment to order. These relationships
can be represented in a procedural network.

The example given by Sacerdoti’® to demonstrate a
procedural network in the NOAH planning system is
that of painting a ceiling and painting a ladder. The two
actions paint the ceiling and paint the ladder are de-
picted in parallel as state.l in Figure 11. In effect,
there is no commitment to order, that is, no suggestion
that one action should be performed before the other.
In order to work out the correct sequence, as well as to
provide a more specific set of actions to perform, it is
necessary to consider how the actions in state.! can be
broken down into more specific actions. This can be
achieved with the mappings represented as transfor-
mation rules in Figure 12. State.2 is achieved by sim-
ply implementing these transformations, that is, ex-
panding the tasks paint the ceiling and paint the ladder
into their component actions. There is only a partial
commitment to order as yet. Provided we have some
knowledge about the domain, it becomes clear that
certain actions are going to conflict if an attempt is
made to arrange the network serially. (For example, it
is not possible to climb something if it has just been
painted.) Specialized rules (called critics) are intro-
duced to adjust the network in the light of such knowl-
edge. State.3 shows how the linkages in the network
have been adjusted such that apply paint to ladder
occurs after apply paint to ceiling. The application of
further critics would recognize that the same paint
used for the ceiling can also be used for the ladder and
would cause one of the actions, get paint, to be elimi-
nated.

This approach ensures that partial sequences of
actions are refined by critics before they become too
large. The system therefore proceeds from a less de-
tailed to a more detailed sequence, the critics making
sure that the actions make some type of global sense
before the network is expanded further. It can also be
seen as an hierarchical approach in which attempts are
made to create simple, correct, high-level sequences
before they are expanded into greater detail where the

Daim‘ the ceiling l I paint the ladder |

State.l

get paint

I apply paint to ladder

l apply paint to ceiling I

State.2

get paint

I apply paint to ladder I

State.3

Figure 11. States in the transformation of a procedural network
(after Sacerdoti?),

costs of rectifying the networks are greater. Although
the use of critics is intended primarily to resolve con-
flicts between actions, the device can be extended to
incorporate heuristics that also help to avoid conflicts.

Translating this method into the linguistic paradigm,
it becomes apparent that, in the same way that we
required a richer understanding of a building than just
a knowledge of its basic components, we require a
richer understanding of actions. Actions bear a seman-
tic relationship to other actions as exemplified in Fig-
ure 12. In the context of design the action put din-
ing_room east_of kitchen is therefore also a specific
instance of the action put dining_room next_to
kitchen, which is a specific instance of put din-
ing_room near kitchen. The actions eventually map
onto high level actions such as design._house. These
are semantic mappings.

We therefore have a language system that takes as
its initial condition some high level action (or actions)
and produces a predominantly serial configuration of
executable actions as an end state. Intermediate states
consist of actions on different semantic levels arranged
with various degrees of commitment to order. The
transition is therefore from a semantic set of actions to
an executable set of actions, and from a set of actions
in which there is relatively little commitment to order
to a set of actions with a more complete commitment
to order.

What is the grammar of this language? The semantic
mappings between actions can be employed to trans-
form states. These mappings can be utilized by a gram-
mar rule called an ‘‘expansion rule,”” which replaces
higher level actions with lower level actions. (An alter-
native would be to formulate the mappings as rules in
themselves, as in Figure 12. This approach has not
been adopted in order to preserve generality.)

As was illustrated with the example about painting a
ceiling, just substituting executable actions for higher
level actions is insufficient for producing appropriate
sequences since actions interact with one another.
Other grammar rules are required, concerned with in-
teractions between actions. In the NOAH system, crit-
ics tend to resolve conflicts within a network, but the
general idea can be extended to other operations on
networks. Such rules are intended to encapsulate more
complex knowledge than can be represented by simple
mapped pairs. An example of a rule appropriate to the
domain of layout planning is one that states

If the procedural network contains a set of
actions concerned with locating spaces and
these actions are arranged in parallel (that is,
there is no commitment to order)

then order the actions according to the importance
of the spaces on which they operate.

This can be interpreted as: if there are several spaces
to be located and the desirable interconnections be-

paint the ceiling —
l apply paint to ceiling I
l get paint I
| paint the ladder —p

I apply paint to ladder |

Figure 12, Examples of rules applicable to the language of Figure
11.

COYNE AND GERO: SEMANTICS AND ORGANIZATION OF KNOWLEDGE 79



and

locatebedroomJ Focatehtchen I I locate bathroom

State.1

State.2

!and

Figure 13, States in the transformation of a procedural network in
the domain of spatial layout.

State.3

tween spaces are known, then locate the space with
the most interconnections first. Although not entirely
general, this is a simple heuristic of the type that a
designer might use in beginning a layout exercise.

A simple example of states in a domain about
actions in the design of a building is illustrated in Fig-
ure 13. State.l contains the single action design house.
Given that there is a simple mapping between this
action and the actions of locating the components of
house, state.2 can be produced by an expansion rule.
State.3 is produced by applying the rule about locating
the most important element first (described above).
The application of further rules may expand the net-
work into more specific details and take account of
more complex mappings between actions. Further in-
formation about building components is required in
order to bring about the transformations of Figure 13
than is evident from the semantic mappings described.
This will be discussed below in connection with con-
text.

The grammar of the language of actions therefore
captures knowledge about the ordering of actions. As
illustrated by the simple example of Figure 13 we
might expect that designers make use of this sort of
knowledge all the time. A further point that can be
made about this formulation is that it can be con-
structed as a well-behaved system. In the same way
that the system demonstrated in Figure 4 has only a
single end state, it is possible that the continuation of
the sequence of states in Figure 13 would produce a
single end state, and that the order in which the rules
arc applied only affects the efficiency with which the
end state-is reached. This is not to say that only a
single building layout is produced. The end state may
consist. of many sequences of actions in disjunction.
When executed; the sequences of actions produced by

80 DESIGN COMPUTING, VOL. 1, NO. 1, 1986

this system generate artifacts in the language of form.
The sequences may result in the generation of many
artifacts. The end state of the language of actions is a
plan. We now consider what mechanism can be em-
ployed to control the grammar in order to produce
plans.

Language of Plans

The type of knowledge that we wish to encapsulate
is that which comes under the category of ‘‘meta-plan-
ning’’ knowledge, as suggested by Wilensky*!' and Ste-
fik¥ or control knowledge, as discussed by Davis.*®
The objective is to capture universal principles em-
ployed in decision making.

Knowledge about the selection and ordering of the
rules constitute the grammar of actions (described
above). This knowledge can be represented as a gram-
mar within a language that is concerned with formulat-
ing plans. In the same way that the rules in the lan-
guage of form can be given names that enable them to
be treated as vocabulary elements in the language of
actions, it is possible to give the rules of the language
of actions names and regard them as vocabulary ele-
ments in the meta language called the language of
plans. The vocabulary of this language therefore con-
sists of planning tasks such as those that were effec-
tive in bringing about the state changes in Figure 13:

expand actions,
order actions, etc.

Tasks such as these can be organized according to
their relationships with one another and they can also
be organized as groups that are related to other tasks.
Rather than the procedural network schema discussed
above, it seems convenient to relate these tasks within
a simple hierarchical graph. The levels within this
graph make explicit the semantic relationships be-
tween the tasks. They can be considered as similar to
macrooperators in a structured computer program or,
in this context, it is perhaps more meaningful to talk
about a schedule of tasks. A schedule (unconnected
with any domain) is depicted graphically in Figure 14.
Task I can be broken up into the subtasks /./ and 1.2.
Task 1.1 can be broken up into the subtasks /.1./ and
1.1.2, etc. There is also an implicit order in that task

ltask 1.1.1 ] ]task 112 [ Itask].Z.] | |zask 122 |

Figure 14. A hierarchical schedule of tasks.

1.1 is to be performed before task /.2, and task /.1.1 is
to be performed before task 1.1.2, etc.

The advantage of arranging tasks hierarchically in
this fashion is that those which naturally group to-
gether can be treated as a block if it becomes neces-
sary to rearrange the schedule. So, if the order of tasks
1.1 and 1.2 is to be changed, then the tasks below these
are exchanged by implication as well.

The syntactic output of this language system is
therefore a graph of hierarchically arranged tasks
called a schedule. Such a schedule could be built up
from some simple initial state, but it is proposed that
the initial state of this system is a complete schedule
(as in Figure 14), modified in some way to make it
more responsive to the domain in which the language
is operating. The grammar for this system should con-
sist of rules that manipulate the schedule. There are
two ways in which we could envisage this happening.
The first, that of modifying the structure of the sched-
ule by means of rules, will not be considered here.

The other way in which a grammar can operate on
the schedule is where there is a choice of tasks to be
undertaken and the ordering has to be decided upon,
such as at the branch ends of the graph. One way of
handling this problem is to partition the global data-
base of the language of actions in such a way that the
effects of each task can be stored temporarily before
they are actually executed. The grammar then oper-
ates on this information. The procedure therefore is to
discover the tasks that are applicable to the current
state of the global database of the lower-level lan-
guage. This is achieved by triggering the tasks, that is,
checking that their preconditions exist in the global
database and recording what changes each task will
make to the database. The language of plans therefore
requires ‘‘cooperation’’ from the language of actions.

The language that this meta-language is controlling
(the language of actions) tends toward well-behaved
characteristics, and the grammar of the language of
plans consists of scheduling rules. An advantage of
this formulation is that the importance of domain-inde-
pendent principles becomes apparent. Rules for ma-
nipulating tasks could be based on general strategies
for problem solving, such as

1. Consolidation

2. Diversification

3. Convergence

4. Divergence
A strategy to consolidate might be expressed as a rule
that takes as its precondition the relative sizes of the
states produced by each of the planning tasks compet-
ing to be executed, and as a consequence selects the
task that tends to reduce the size of the database. Al-
ternatively, it may select the task that produces a state
with the smallest ‘‘conflict set’” (set of competing
tasks). A rule about convergence may select the task
that operates on the most recently affected database

item. This will cause the system to concentrate on
particular elements. Rules about convergence may
also operate by selecting planning tasks that operate
on the most important database items first. It could be
maintained that important elements are those which
occur earliest on a procedural network.

The control strategy for this system could be one in
which only a single scheduling rule is adopted, or there
might be an overriding strategy that states, for exam-
ple,

Attempt to consolidate, and converge attention
(whichever is applicable at any given state), if, after
a particular period of time, no satisfactory end state
is reached, then attempt to diversify.

It is possible to conceive of a meta-language operating
above the language of plans to facilitate the represen-
tation of this sort of knowledge. This will not be devel-
oped here, however. In the following section we con-
centrate on the implementation of a system concerned
with representing and manipulating knowledge that de-
velops plans of actions.

REPRESENTING PLANNING KNOWLEDGE

Three layers of language appropriate to any domain
have been discussed, but here they will be considered
specifically in relation to layout planning. The first, the
language of form, takes as its vocabulary elements di-
mensionless spaces. The grammar is a set of rules for
manipulating spaces such that the layout ‘‘evolves’ as
a configuration of rectangles. The grammar can also be
seen as a set of actions that form the vocabulary ele-
ments of a meta-language (the language of actions). In
this language, actions are configured on a structure
called a “‘procedural network.”” The outcome of this
language system is a statement about actions and their
ordering. This provides the control for the language of
form, that is, it provides an a priori rule list that, when
executed, produces artifacts.

The grammar of the language of actions consists of
rules that transform procedural networks. These rules
can be identified by descriptive names and are a type
of planning task. The language of plans takes these
tasks as its. vocabulary elements arranged within a hi-
erarchical schedule and selects tasks according to its
grammar. This language operates by deciding between
tasks dynamically as choices are demanded by the lan-
guage of actions. So this language operates not by pro-
viding an a priori list of operations for the language
below it but by operating in consort. It can be seen
therefore that the three languages operate differently
and they each bear different relationships with one
another. These relationships are illustrated schemati-
cally in Figure 15. The arrows link the syntactic prod-

COYNE AND GERO: SEMANTICS AND ORGANIZATION OF KNOWLEDGE 81



Language of actions

Language of plans

Language of form

S

—
| ¢——
1

—
|¢1

v

/A

Figure 15. Schematic representation of the relationship between a language and meta-languages in the spatial layout problem.

uct of each language with the transformational gram-
mar of the language below it.

Context

Transformational grammar rules can respond, there-
fore, to control exercised from above (a meta-lan-
guage) and to conditions within the global database
and also to context. We may regard as context those
parts ‘of a problem domain that remain constant
throughout the process but vary from one problem to
the next and therefore contribute to the unique nature
of any design. In this formulation it seems appropriate
to make this information explicit. Contextual informa-
tion in the layout problem may therefore be concerned
with desirable spatial relationships, the hierarchical re-
lationship between parts, relative room sizes, etc. The
contents of the context could also be seen as a design
brief or a set of performance specifications. (The flexi-
ble nature of a design brief suggests that a more com-

82 DESIGN:COMPUTING, VOL.-1,'NO. 1, 1986

plete formulation should, of course, allow for lan-
guages that actually operate on the context.)

A set of facts constituting a design context is repre-
sented as terms in predicate calculus notation able to
be manipulated in Prolog* and is depicted graphically
in Figure 16. The first fact is that a particular building
(called building(x)) is composed of seven spaces, six of
which are rooms, the last being a void (that is, a court-
yard or other open space). The desired relationships
between the spaces are depicted in an adjacency net-
work. The context constitutes a type of input to the
system, but it may itself be a product of a similarly
formulated design system. It is not entirely realistic to
assume that such relationships will remain static
throughout the design process, but they are assumed
static for this exercise. In this example we also con-
sider the relative sizes of some of the rooms to be
important. This will serve to constrain or, in this ex-
ample, guide the selection of plan actions. The spatial
configuration should be such that these relative sizes

building(x)

Building composition

Adjacency network

room(d)

room(a)

room(c)

room(f)

void(g)

Relative room sizes

Figure 16. Design context for a spatial layout problem.

can be achieved when the rooms are dimensioned,
even though the relative size differences are not actu-
ally evident from the dimensionless configuration.

This set of facts therefore constitutes an explicit,
high level description of the final artifact. Also part of
the context is the initial state of the planning process.
Here it is the action, configure(building(x)); that is, the
task is to arrange the components of building(x). This
is the semantic action that must be expanded and
shaped into a sequence of low level syntactic elements
able to be executed. Therefore, the grammar for
achieving this ‘‘reads’’ the other facts in the context as
well as the current state of the plan.

Plan Grammar

Some rules of a planning grammar are represented
schematically in Figure 17. (These rules are simplified.
They have been represented more precisely than illus-
trated here in predicate logic.) The expressions in the
boxes are Prolog terms, where upper case characters
are variables. As a rule is executed, its left side is
matched against the current state of the global data-
base (that is, the facts representing the state of the
plan). The variables are instantiated to corresponding
values in the matched facts, and the terms on the right
side of the rule are substituted in the current state.

configure(X) —b

[puz(A) ] lput(B) | lput(C) |

| pud) | [paB) | [ puC) ]

b

v

Figure 17. Planning grammar.

COYNE AND GERO: SEMANTICS AND ORGANIZATION OF KNOWLEDGE 83



)

I put(B, next _to, A) I

—
[ put(B, next_to, A) I put(B, east, A) ]
e.
I put(B, west, C) l I put(B, west, C) |
A - A
| put(A, next_to, B) I put(A, next_to, C) | ] put(A, north, B) I | put(A, north, C) |
A>B,C.
I put(B, west, C) | [ put(B, west, C) l
A [ @d ] — A =
| put(A, next_to, B) l put(A next_to, C) ] ] put(A, east, B) ] l put(A, north, C) |
B>A,C.

| pui(C,Dir,A) |

| pur(C, Dir, A) ]

; —>

>E

l put(B, next_to, A) l l put(B, next 1o, A) | [ put(B, next_to, C) l

—>
| pur(4, Dirl,B) | [ pu(A, Dir2, C) | | pui(A, Dirl, B, Dir2,C) |

[

K

Figure 17. (cont.)

84 DESIGN:COMPUTING, VOL. 1, NO. 1, 1986

B |C C

Figure 18. Alternative configurations of spaces that result from
sequential plans generated by planning rules g and 4 in Figure 17.

Rule a is an expansion rule. It means that the action
to configure an object should be expanded into the
conjunction of several actions placing the components
of that object. Rule b orders a set of such actions ac-
cording to the valency of the rooms on the adjacency

l
| configure(building(x)) -l
!

network. This assumes that the placement of rooms
with the most interconnections is somehow critical
and that the placement of these rooms should be ac-
complished first. Other rules could be devised that or-
der on some other basis, such as size. Rule ¢ simply
says to anchor the first room on the ‘“work plane.”
Rule d states: if there is a room B and, according to
the set of adjacency relationships it should be linked to
aroom A, and A has already been anchored, then sub-
stitute put(B, next_to, A) for put(B). This is equivalent
to placing objects adjacent to objects in place and with
which they should be linked. Rule e arbitrarily locates
the second object to the east of the first object. This is
a simple expedient. It is considered that other configu-
rations can be handled by the rotation and reflection of
the entire configuration. Rules fand g are examples of
rules for orientating the rest of the rooms. They take

Stare.1 State 2

l anchor(room(b)) l

|
[ put(room(c), next_to, room( b)ﬂ

put(room(b))

and

put(room(c))

put(room(f))

\
Lput(room(f), next to, room(b)) l I put(room(f), next_to, room(c)) ]
\

and

put(room(a))

I put(room(a), next_to, room(b)) I

put(room(d))

put(void(g))

Lput( room(d), next_to, room(aTI [ put(room(d), next_to, room(c)) ]

put(room(e :
proonte) |
State.3 and

Ilut(void(g), next_to, room(b) ] Lput(void(g), next_to, room(f)) ]

and

l put(room{e), nexr_to, room(c)) 1

State 4

Figure 19. States in the development of a plan for generating a floor layout.

COYNE AND GERO: SEMANTICS AND ORGANIZATION OF KNOWLEDGE 85



| anchor(room(b)) I
|
| put(room(c), east, room(b)) I

b

P
! put(room(f), north, room(b)) I I put(room(f), west, room(c))J

ol

I put(room(a), south, room(b))l ] put(room(a), south, roam(cm

olp

I put(room(d), south, room{a))

[ put(room(d), west, room(c)) l

ol

l put(void(g), west, room(b)) l put(void(d), south, room(f)) [

b

I put(room(e), west, room(c)) I l put(room(e), north, room(f)) I

State.5

‘ anchor(room(b)) l
I
I put(room(c), east, room(b)) !

l put(room(f), north, room(b), west, room(c)) I

l put(room(a), south, room(b), west, room(c)) l

| put(room(d), south, room(a), south, room(c)) l
I
l put(void(g), west, room(b), south, room(f}) ]

l put(room(e), west, room(c), north, room(f}) [

State.6
Figure 19. (cont.)

the next_to relationships and refine them into more
specific relationships, depending on the relative sizes
of the rooms. Rule f therefore states that if room A is
to be next_to room B and also room C and the action
for putting B west of C has already been established,
and A is to be the larger of the three rooms, then place
A north of B and north of C (provided nothing has
already been placed there). Rule g applies if B is to be
larger than A and C. The effects of these alternative
rules on the eventual spatial configuration is shown
graphically in Figure 18. The rules for achieving this

86 DESIGN COMPUTING, VOL. 1, NO. 1, 1986

and other orientations can be represented in a single
rule, but they have been separated here for clarity.

Rule # states that if there are no other rules to deter-
mine the placement of room B the action put(B,
next_to, A) can be expanded to the conjunction of two
actions as shown. B is simply located adjacent to C
and the room next to which C is already positioned.
Rule i replaces the conjunction of two actions with a
single action. Implicit in these rules is the general
strategy to proceed from less specific to more specific
actions (that is, next_to relationships to north, south,
east and west directional relationships), and the strat-
egy of using triangulation for fixing objects in place.
That is, objects are placed in relation to at least two
objects already in place.

These are examples of the types of rules that can be
employed in the manipulation of plans of simple design
actions. The rules are intended to reduce the likeli-
hood of conflicts between actions by means of simple
heuristics. Where conflicts occur these can be handled
by means of rules after the fashion of the critics of the
NOAH system? that might adjust the network by reor-
dering actions. Rules that specifically handle conflict
resolution have not been illustrated here, but these
operate in the same way as the other rules of the gram-
mar.

roorn(b)
roorfc)
roorn(f)
roomn(fy
roorn(b} || roam{c)
raom(f)
room(b) room(e)
raarm{c) room(a)
reorn(t) raam(a) room{d)
roam{f) room(e)
roorn(h) roorn{c) reorn(f)
room{c)
room(b)
void(g) roam(a)
void(g) roor(a}
room(d) room(d)

Figure 20. States in the generation of a floor layout.

& aoli1s
Shell: Tool 1:4
ssk(procedure, establish positions,qH .
task(procedure, establish positians,d| inkiroom{a), room(b)).
ditask(rule,repeat_defar_unattached od) ink{room(b), room(c)).
hd - — |[link{room(c), room(d)).
Tink{room(d), room(a)).
Jink{room(e), room(c)).
Tink{room(f), room{b)).
1ink{room(f), room{c)).
1ink(room(f}, void{g)).
1ink(void{g), roomi(b)).

; task(rule,establish_orientations, 'o
‘dltask(procedure,establish_orientatio

ask({procedure,establish_orientatio

ask(rule,orientate_the_rest_of_spaces, 'position adjacent to existin .
spaces’ ).

ask{rule,orfentate_the_rest_of_spaces, 'orientate spaces ' )

Jitask(rule, repeat_combine, ‘combine action pairs’).

‘task{procedure,develop_form,activate_window(3)).

: ,develop_form,fi re_nodss).

1 ,develop_form, 1ink_rooms).

= task{procedure,develop_form,dslete vaids).

“lives
ll 7~ screenlaser.

orc

delske_room(volc(g))

anchor(room(b})

pu(room(c}, ast, room(b})

[ puk{room(t). north, raom(b), wast, room(e)) |

[ ptroom(d. soutt room(b), west, room(c)) |

| pulroom(d). south, room{a). south, room{e)) ]

[ ubtvoidlo), wast, room(s), sauth roomif |

[ sttraomte). west, room(e). northy rorn()

Figure 21. Screen display of a planning system.

shell oo 4

Shell Tool 1.4 1
sk(procedurs,establish_positions,q H.nk(room(a), room{b)).
sk{procedure,establish positions,d) ink{reom(c), veid(d)).

task(rule,rapsat_dsfer_unattached offfl Ink(veld{d), room(a)).
= - — ink(room(e), room(c)).
Jltask(rule,establish_adjacencies, 'pod|! Ink(room(f), room(b)).
ltask(rule,establish_sdjscanciss, ‘pod)] iNk{room(f), room(g)).
ltask(rule,establish_adJacencies, 'adyf! ink(roem(g), room(b)}.

“Altask(rule,astsblish_orientations, ‘o lfnk(room(g), room{aj;,

{ltask(procedure, establish_orientatiody inkiroom(h), room(b)}.

: - Jlink(room(h), roam(c)).

task(procedure,establish_orientatiol
task(rule,orientate_the_rest_of_spaces, ‘position adjacent tg existin k.
g spaces'). .
task(rule,orientate_the_rest_of_spaces, 'orientate spaces').
task(rule,repsat_combina, 'combine action pairs').
task(procedure,develop_form,activate_window(3)).
task(procedure,dsvelop_form,fire_nodes).

task(procedure,develop_form, ink_rooms) .
ask{procedura,davelop_form,delete_vaids).

es
| 7~ screeniaser.

delete_room(vald(d))

anchor

put{room(c). east, room(b))

[ puktroom(g), north room(a), ecst, roem(s)) |

[ puttvois(eh, south, roorn(b), sauth, reom(a)) |

[ st(raom(c). wast, voidle), sorkh roorath)) |

put(room(f), narth, room(b), narth, rmtm

[ puktroomhy, wast, roomib), rerth roorn(c)) |

[ puktroomte), west, voidtd), souths raomte)) |

Figure 22. Output from a set of contextual requirements involving eight spaces.



Some of the rules are independent of any domain
and would appear to be universally applicable; others
might be regarded as idiosyncratic and of limited appli-
cability. The programming environment is such that
the system is not entirely dependent on the appropri-
ateness of the rules. The knowledge base (rules) can be
enhanced and developed without detriment to the
overall framework. An example of the development of
a plan of actions employing the rules of Figure 17 is
shown in Figure 19.

Six states in the development of the plan are shown.
State.l is the initial state; this is expanded to the con-
junction of actions in state.2 derived from rule a of
Figure 17. State.3 depicts the ordering produced by
rule b; it arbitrarily selects one of the two spaces with
equivalent highest valencies to be positioned first.
State 4 results from the application of rule ¢, and the
repeated application of rules d and e. State.4 therefore
depicts a sequence of actions starting with the place-
ment of the most important space. Subsequent actions
locate rooms next to other rooms already in place and
with which they are to be linked. Stare.5 is a plan
produced by the repeated application of rules f, g, and
h. The repeated application of rule / produces the end
state.6.

When this sequence of actions is interpreted by the
language of form it results in the states depicted in
Figure 20. The final state is a floor layout. Further
rules can be applied to delete voids, to draw openings
between spaces that are linked, and to position win-
dows.

Figures 21 and 22 show a computer graphics envi-
ronment devised primarily for experimenting with
planning grammars. The computer screen is divided
into “‘windows’’ displaying information about context,
schedules, plans, and the development of the form of
the artifact. Figure 21 depicts the layout developed in
Figure 20, and Figure 22 shows a different layout gen-
erated from another body of contextual information.
This environment can be extended to cover each of the
meta-languages discussed above. The intention is to
create a flexible environment in which contextual in-
formation, knowledge, and system processes are visi-
ble and amenable to modification and development.

CONCLUSION

Meta-languages have been discussed as a way of for-
malizing the complex mappings between meaning and
artifact in design, such that designs can be generated
that exhibit desired attributes. The rules of a grammar
that operate on a vocabulary of form are considered as
actions.  We have considered how other grammars
might operate on those actions. The assumption is
made that designers are readily able to articulate such
grammars and that they constitute a type of knowledge

88 DESIGN COMPUTING, VOL.- 1, NO. 1, 1986

about design. Some of the semantic relationships be-
tween these actions and between actions and design
attributes can also be known. Some attempt has been
made to demonstrate how this view can form the foun-
dation of a knowledge-based computer system. In the
example, three levels of language and meta-language
were discussed as a way of structuring knowledge: a
language of form, a language of actions, and a language
of plans, although the languages could be defined oth-
erwise.

A basic principle being exercised here is that of ex-
ploiting the redundancies inherent in the way design-
ers (or any problem solvers) view the world. Design
systems can therefore operate on multiple abstractions
of the world, such as adjacency graphs, procedural
representations (at various levels), and formal and ge-
ometrical arrangements of spaces.

The implementational advantage of this multilevel
view of design is that languages can be made to resem-
ble what we have termed well-behaved systems, that
is, systems that require only simple control mecha-
nisms. The ideas put forward here are not dependent
on the sophistication of the grammars described, al-
though more complex grammars may be required to
demonstrate conclusively the utility of this view.

In this paradigm design processes require grammars
that operate upon other grammars not only by the se-
lection of rules but in the creation and modification of
rules. Further investigation into the dynamics of the
design process is required in order to model effectively
the exploratory nature of design.

This work has been supported by the Australian Research Grants
Scheme and a Sydney University Postgraduate Research Student-
ship. Editorial assistance was given by Fay Sudweeks.

References

1. Harrison, M. A., Introduction to Formal Language Theory,
Addison-Wesley, Reading, 1978.

2. Winograd, T., Language as a Cognitive Process, Addison-Wes-
ley, Reading, 1983.

3. Edwards, A. T., Architectural Style, Faber and Gwyer, Lon-
don, 1926.

4, Zevi, B., The Modern Language of Architecture, University of
Washington Press, Seattle, 1978.

5. Dahl, O.-J., E. W. Dijkstra, and C. A. R. Hoare, Structured
Programming, Academic Press, London, 1972.

6. Johnson, J. H., “‘Hierarchical Structure in Design,”’ Design
Policy Conference Proceedings, Vol. 3, Design Council, Lon-
don, 1984, pp. 51-59.

7. Doyle, J., ““A Truth Maintenance System,”” in B. L. Webber
and N. J. Nilsson (eds.), Readings in Artificial Intelligence,
Tioga, Palo Alto, 1981, pp. 496-516.

8. Buchanan, B. G., ‘‘New Research on Expert Systems,”” in J. E.
Hayes and D. Michie (eds), Machine Intelligence 10, Wiley,
London, 1982, pp. 269-299.

9. Hayes-Roth, F., D. A. Waterman, and D. B. Lenat, (eds.),
Building Expert Systems, Addison-Wesley, Reading, 1983.

10. Bijl, A., ““‘An Approach to Design Theory,” in H. Yoshikawa
(ed.), Preprints of Design Theory of CAD, Tokyo University,
Tokyo, 1985, pp. 1-23.

1

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

. Akiner, T., TOPOLOGYI1: A System That Reasons About Ob-
Jects and Spaces in Buildings, Unpublished Ph.D. Thesis, Syd-
ney University, 1985.

O’Cathain, C. S., *“Why is Design Logically Impossible?’" De-
sign Policy Conference Proceedings, Vol. 3, Design Council,

30.

. Gero, J. S., and R. D. Coyne, ““‘Knowledge-Based Planning as a

Design Paradigm,”” in H. Yoshikawa (ed.), Preprints of Design
Theory in CAD, Tokyo University, Tokyo, 1985, pp. 261-295.
Hayes-Roth, F., and V. R. Lesser, ‘“‘Focus of Attention in the
Hearsay-1I System,”” Proc. IJCAI5 1977, pp. 27-35.

London, 1984, pp. 33—36: 31. Hayes-Roth, B., and B. Hayes-Roth, ‘A Cognitive Model of
Chomsky, N., The Logical Structure of Linguistic Theory, Planning,”” Cognitive Science, Vol. 3, No. 4 (1979), pp. 275—
Plenum Press, New York, 1975. 309.
Alexander, C., A Pattern Language, Oxford University Press, 32. Hayes-Roth, B., *‘A Blackboard Architecture for Control,” Ar-
Londpn, 1977. . o tificial Intelligence, Vol. 26 (1985), pp. 251-321.
G. S.tmy and J. Gips, Algorithmic Aesthetics, University of Cali- 33. Quinlan, J. R., ““‘An Introduction to Knowledge-Based Expert
forma Press, 1978. o Systems,”” The Australian Computer Journal, Vol. 12, No. 2
Mitchell, W. J., “*Synthesis with Style,”’ PArC79, AMK, Berlin, (1980), pp. 56-62.
1979, pp. 119-134. ' . 34, Barr, A., and E. A. Feigenbaum, The Handbook of Artificial
Hornstein, N., Logic as Grammar, MIT Press, Cambridge, Intelligence, Pitman Books, London, 1981, Vols. I-1II.
1984. o 35. Stiny, G., ““A Note on the Description of Designs,” Environ-
Nilsson, N. J., Principles of Artificial Intelligence, Springer- ment and Planning B, Vol. 8 (1981), pp. 257-267.
Verlag, Berlin, 1982. . 36. Mitchell, W. J., J. P. Steadman, and R. S. Liggett, ‘‘Synthesis
prne, R.,D., arlld J. S. Gero, “‘Design Knowledge and Sequen- and Optimization of Small Rectangular Floor Plans,” Environ-
tial Plans,”” Environment and Planning B, 1985, Volume 12, pp. ment and Planning B, Vol. 3 (1976), pp. 37-70.
4Q1—418. . ‘ . 37. Earl, C. F., ““A Note on the Generation of Rectangular Dissec-
Mltchell, W-. J., ““The Theoretical Foundation of Computer- tions,”” Environment and Planning B, Vol. 4 (1977), pp. 241—
Aided Architectural Design,”” Environment and Planning B, 246.
V.ol. 2 (1975), pp 127-150. 38. Flemming, U., ““Wall Representations of Rectangular Dissec-
S.lmFm’ H. A., The Structure of Hl-Structured Problems,”” Ar- tions and Their Use in Automated Space Allocations,” Environ-
ttﬁcz.al Intellzgencei Vol. 4 (1973), pp. 181-201. ment and Planning B, Vol. 5 (1978), pp. 215-232.
Daws, R.,and J. King, ‘*An Overview of Production Systems,”’ 39. Steadman, J. P., Architectural Morphology, Pion, London,
in E. W. Elcock and D. Michie (eds.) Machine Intelligence 8, 1983,
El.hs Horwood, Ch.nchester, 1977., pp. 300-332. 40. Balachandran, M., and J. S. Gero, ‘‘Dimensioning of Architec-
Glps, J., and G. Stl‘ny,.“Productlon Systems and Grammars: A tural Floor Plans under Conflicting Objectives,”” Working Pa-
Uniform Characterisation,” Environment and Planning B, Vol. per, Department of Architectural Science, University of Syd-
7 (1980), pp. 399-408. ney, 1985.
I\‘Jewell, A.,and H. A. Simon, Human Problem Solving, Pren- 41. Wilensky, R., ‘“Meta-Planning: Representing and Using Knowl-
tu{e—Hall, Englewood Chffs, 1972. edge about Planning in Problem Solving and Natural Language
Stiny, G., and W. J. Mitchell, *‘The Palladian Grammar,” Envi- Understanding,”” Cognitive Sciences, Vol. 5 (1981), pp. 197—
ronment and Planning B, Vol. 5 (1978), pp. 5-18. 233.
Sacerdoti, E. D., A Structure for Plans and Behavior, Elsevier, 42. Stefik, M., “‘Planning and Meta-Planning,”” Artificial Intelli-
New York, 1977. gence, Vol. 16 (1981), pp. 141-169.
S}lssman, G. J., A Computer Model of Skill Acquisition, Else- 43. Davis, R., ““Meta-rules: Reasoning about Control,” Artificial
vier, New York, 1975: Intelligence, Vol. 15 (1980), pp. 179-222.
Ap})elt, D. E., ““Planning English Referring Expressions,’” Arti- 44. Clocksin, W. F., and C. S. Mellish, Programming in Prolog,
ficial Intelligence, Vol. 26 (1985), pp. 1-33. Springer-Verlag, Berlin, 1981.

COYNE AND GERO: SEMANTICS AND ORGANIZATION OF KNOWLEDGE 89





